Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2317254121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551840

RESUMO

Pv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis. In general, the solute carrier 5 (SLC5)-type secondary active transporters cotransport Na+ and carbohydrates including glucose. The heterologous expression systems showed that the transporter belonging to the SLC5 family, whose expression increases upon rehydration, exhibits Na+-dependent trehalose transport activity. Therefore, we named it STRT1 (sodium-ion trehalose transporter 1). We report an SLC5 family member that transports a naturally occurring disaccharide, such as trehalose. Knockout of the Strt1 gene significantly reduced the viability of Pv11 cells upon rehydration after desiccation. During rehydration, when intracellular trehalose is no longer needed, Strt1-knockout cells released the disaccharide more slowly than the parental cell line. During rehydration, Pv11 cells became roughly spherical due to osmotic pressure changes, but then returned to their original spindle shape after about 30 min. Strt1-knockout cells, however, required about 50 min to adopt their normal morphology. STRT1 probably regulates intracellular osmolality by releasing unwanted intracellular trehalose with Na+, thereby facilitating the recovery of normal cell morphology during rehydration. STRT1 likely improves the viability of dried Pv11 cells by rapidly alleviating the significant physical stresses that arise during rehydration.


Assuntos
Chironomidae , Dessecação , Animais , Trealose/metabolismo , Larva/metabolismo , Chironomidae/genética , Insetos/metabolismo , Linhagem Celular
2.
Mitochondrion ; 73: 84-94, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37956777

RESUMO

The sleeping chironomid (Polypedilum vanderplanki) is the only insect capable of surviving complete desiccation in an ametabolic state called anhydrobiosis. Here, we focused on the role of oxidative stress and we observed the production of reactive oxygen species (ROS) in desiccating larvae and in those exposed to salinity stress. Oxidative stress occurs to some extent in desiccating larvae, inducing carbonylation of proteins. Oxidative stress overcomes the antioxidant defenses of the larvae during the first hour following rehydration of anhydrobiotic larvae. It facilitates the oxidation of DNA and cell membrane lipids; however, these damages are quickly repaired after a few hours. In addition to its deleterious effects, we demonstrated that artificial exposure to oxidative stress could induce a response similar to desiccation stress, at the transcriptome and protein levels. Furthermore, the response of anhydrobiosis-related genes to desiccation and salinity stress was inhibited by antioxidant treatment. Thus, we conclude that oxidative stress is an essential trigger for inducing the expression of protective genes during the onset of anhydrobiosis in desiccating of P. vanderplanki larvae.


Assuntos
Chironomidae , Animais , Chironomidae/genética , Chironomidae/metabolismo , Dessecação , Antioxidantes/metabolismo , Estresse Oxidativo , Larva/genética , Larva/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36078662

RESUMO

We analyzed the dietary composition of Polypedilum larvae among two contrasting habitats (river and weir). Our approach was (i) to apply eDNA-based sampling to reveal the gut content of the chironomid larvae, (ii) the diversity of gut contents in the two aquatic habitats, and (iii) assessment of habitat sediment condition with the food sources in the gut. The most abundant food was Chlorophyta in the gut of the river (20%) and weir (39%) chironomids. The average ratio of fungi, protozoa, and zooplankton in river chironomids gut was 5.9%, 7.2%, and 3.8%, while it was found decreased to 1.2%, 2.5%, and 0.1% in weir chironomids. Aerobic fungi in river midge guts were 3.6% and 10.34% in SC and IS, while they were in the range of 0.34-2.58% in weir midges. The hierarchical clustering analysis showed a relationship of environmental factors with food contents. Abiotic factors (e.g., pH) in the river and weir habitats correlated the clustered pattern with phytoplankton and minor groups of fungi. This study could help understand the food source diversity in the chironomid and habitat environmental conditions by using eDNA metabarcoding as an effective tool to determine dietary composition.


Assuntos
Chironomidae , Animais , Biodiversidade , Chironomidae/genética , Ecossistema , Larva/genética , Fitoplâncton/genética , Rios
4.
Zootaxa ; 5128(3): 397-410, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36101166

RESUMO

One newly described species of Chironomidae, Polypedilum (Pentapedilum) cranstoni sp. nov., was discovered in ephemeral rock pools from the Maloti-Drakensberg mountains in South Africa. Desiccation-resistant larvae were obtained from bottom sediments of rock pools that had been dry for the previous several months. After rehydration, ex situ adults emerged and were collected. The morphology and diagnostic characters of the new species (male and female adults) are described here together with an analysis based on their COI gene sequence.


Assuntos
Chironomidae , Distribuição Animal , Animais , Chironomidae/anatomia & histologia , Chironomidae/genética , Dessecação , Feminino , Larva/anatomia & histologia , Larva/genética , Masculino , África do Sul
5.
Genes (Basel) ; 13(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35327960

RESUMO

Genomic safe harbors (GSHs) provide ideal integration sites for generating transgenic organisms and cells and can be of great benefit in advancing the basic and applied biology of a particular species. Here we report the identification of GSHs in a dry-preservable insect cell line, Pv11, which derives from the sleeping chironomid, Polypedilum vanderplanki, and similar to the larvae of its progenitor species exhibits extreme desiccation tolerance. To identify GSHs, we carried out genome analysis of transgenic cell lines established by random integration of exogenous genes and found four candidate loci. Targeted knock-in was performed into these sites and the phenotypes of the resulting transgenic cell lines were examined. Precise integration was achieved for three candidate GSHs, and in all three cases integration did not alter the anhydrobiotic ability or the proliferation rate of the cell lines. We therefore suggest these genomic loci represent GSHs in Pv11 cells. Indeed, we successfully constructed a knock-in system and introduced an expression unit into one of these GSHs. We therefore identified several GSHs in Pv11 cells and developed a new technique for producing transgenic Pv11 cells without affecting the phenotype.


Assuntos
Chironomidae , Animais , Linhagem Celular , Chironomidae/genética , Genômica , Insetos , Larva
6.
Curr Opin Insect Sci ; 49: 101-107, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990872

RESUMO

Extremophiles often undergo marked changes in genomic architecture, likely as a result of adaptation to the harsh environments they inhabit. These changes can involve gene duplications that affect subsequent gene evolution and the regulation of gene expression. Excellent examples of this are provided by two non-biting chironomid midges (Diptera, Chironomidae): Polypedilum vanderplanki, which in its larval form can withstand almost complete water loss, and Belgica antarctica, which exhibits freeze tolerance. This review presents recent studies on the molecular adaptations and evolutionary features of these and other extremophile chironomid genomes, as well as biotechnological applications of a cell line derived from P. vanderplanki that can survive air-drying. We highlight the importance of genomics in identifying molecular pathways and genomic modifications associated with adaptation to extreme environmental conditions.


Assuntos
Chironomidae , Adaptação Fisiológica/genética , Animais , Chironomidae/genética , Evolução Molecular , Ambientes Extremos , Larva/fisiologia
7.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071490

RESUMO

The Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. The HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an extreme hypometabolism state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


Assuntos
Adaptação Fisiológica/genética , Chironomidae/genética , Dessecação , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Insetos/genética , Animais , Linhagem Celular , Chironomidae/citologia , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos
8.
Environ Sci Pollut Res Int ; 28(24): 31431-31446, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33608783

RESUMO

Although banned in multiple areas, due to its persistence in the environment, endosulfan constitutes a significant environmental concern. In this work, fourth instar Chironomus riparius larvae were exposed at environmentally relevant endosulfan concentrations of 0.1, 1, and 10 µg/L for 24 h to analyze the possible effects of this acaricide on gene expression and enzymatic activity. Transcriptional changes were studied through the implementation of a real-time polymerase chain reaction array with 42 genes related to several metabolic pathways (endocrine system, detoxification response, stress response, DNA reparation, and immune system). Moreover, glutathione-S-transferase (GST), phenoloxidase (PO), and acetylcholinesterase (AChE) activities were assessed. The five pathways were differentially altered by endosulfan exposure with significant changes in the E93, Dis, MAPR, Met, InR, GSTd3, GSTt3, MRP1, hsp70, hsp40, hsp24, ATM, PARP, Proph, and Def genes. Besides, all of the measured enzymatic activities were modified, with increased activity of GST, followed by PO and AChE. In summary, the results reflected the effects provoked in C. riparius at molecular level despite the absence of lethality. These data raise concerns about the strong alteration on different metabolic routes despite the low concentrations used. Therefore, new risk assessment strategies should consider include the effects at the sub-organismal level as endpoints in addition to the classical ecologically relevant parameters (such as survival). This endeavor will facilitate a comprehensive evaluation of toxicants in the environment.


Assuntos
Chironomidae , Praguicidas , Poluentes Químicos da Água , Animais , Chironomidae/genética , Endossulfano/toxicidade , Larva , Poluentes Químicos da Água/toxicidade
9.
Zootaxa ; 5072(2): 191-199, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35390872

RESUMO

P. (T.) anningense sp. n. and P. (T.) biloborum sp. n. are described and illustrated as male imagines from Oriental China. DNA barcodes of two new species are also presented. A key to known male imagines of the subgenus Tripodura from China is given.


Assuntos
Chironomidae , Dípteros , Distribuição Animal , Animais , China , Chironomidae/genética , Cidades , Masculino
10.
Environ Pollut ; 272: 116004, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187849

RESUMO

Existing mutagenicity tests for metazoans lack the direct observation of enhanced germline mutation rates after exposure to anthropogenic substances, therefore being inefficient. Cadmium (Cd) is a metal described as a mutagen in mammalian cells and listed as a group 1 carcinogenic and mutagenic substance. But Cd mutagenesis mechanism is not yet clear. Therefore, in the present study, we propose a method coupling short-term mutation accumulation (MA) lines with subsequent whole genome sequencing (WGS) and a dedicated data analysis pipeline to investigate if chronic Cd exposure on Chironomus riparius can alter the rate at which de novo point mutations appear. Results show that Cd exposure did not affect the basal germline mutation rate nor the mutational spectrum in C. riparius, thereby arguing that exposed organisms might experience a range of other toxic effects before any mutagenic effect may occur. We show that it is possible to establish a practical and easily implemented pipeline to rapidly detect germ cell mutagens in a metazoan test organism. Furthermore, our data implicate that it is questionable to transfer mutagenicity assessments based on in vitro methods to complex metazoans.


Assuntos
Chironomidae , Animais , Cádmio/toxicidade , Chironomidae/genética , Ecotoxicologia , Mutagênese , Testes de Mutagenicidade , Mutagênicos/toxicidade
11.
Int J Biol Macromol ; 164: 3388-3393, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841668

RESUMO

α-enolase (Eno1) is a multifunctional enzyme which can as a stress protein under various environmental stresses. Recent researches also reported that Eno1 appears to have Cd2+ stress-related functions in cadmium tolerant plants. Our previous study inferred that the Eno1 gene might play an important role in the response of Propsilocerus akamusi to exogenous Cd2+. However, reports on the role of the Eno1 gene in coping with cadmium stress are still limited. In this study, we evaluated the roles of PaEno1 in the tolerance of P. akamusi to Cd2+ using RNAi technology and the response of recombinant proteins of PaEno1 in an E. coli expression system under Cd2+ stress. Our results showed that knockdown of PaEno1 did not increase but reduce the sensitivity of P. akamusi larvae to Cd2+ stress. However, bioassays showed the expression of recombinant PaEno1 protein in Rosetta cells enhanced the growth ability of E. coli under Cd2+ stress. These results suggested that overexpression of PaEno1 can significantly enhance the tolerance to heavy metal cadmium stresses in E. coli cells. However, knockdown of PaEno1 genes by RNAi does not increase the sensitivity of P. akamusi to cadmium stress.


Assuntos
Cádmio/metabolismo , Chironomidae/enzimologia , Chironomidae/genética , Técnicas de Silenciamento de Genes , Fosfopiruvato Hidratase/genética , Interferência de RNA , Estresse Fisiológico , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Íons/metabolismo , Metais Pesados/metabolismo , Mortalidade , Proteínas Recombinantes
12.
PLoS One ; 15(3): e0230218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32191739

RESUMO

Water is essential for living organisms. Terrestrial organisms are incessantly exposed to the stress of losing water, desiccation stress. Avoiding the mortality caused by desiccation stress, many organisms acquired molecular mechanisms to tolerate desiccation. Larvae of the African midge, Polypedilum vanderplanki, and its embryonic cell line Pv11 tolerate desiccation stress by entering an ametabolic state, anhydrobiosis, and return to active life after rehydration. The genes related to desiccation tolerance have been comprehensively analyzed, but transcriptional regulatory mechanisms to induce these genes after desiccation or rehydration remain unclear. Here, we comprehensively analyzed the gene regulatory network in Pv11 cells and compared it with that of Drosophila melanogaster, a desiccation sensitive species. We demonstrated that nuclear transcription factor Y subunit gamma-like, which is important for drought stress tolerance in plants, and its transcriptional regulation of downstream positive feedback loops have a pivotal role in regulating various anhydrobiosis-related genes. This study provides an initial insight into the systemic mechanism of desiccation tolerance.


Assuntos
Proteínas de Insetos/genética , Fatores de Transcrição/genética , Animais , Fenômenos Biológicos/genética , Linhagem Celular , Chironomidae/genética , Desidratação/genética , Dessecação/métodos , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Larva/genética , Estresse Fisiológico/genética
13.
Appl Biochem Biotechnol ; 191(1): 164-176, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32096062

RESUMO

Unsuitable pH is a major limiting factor for all organisms, and a low pH can lead to organism death. Late embryogenesis abundant (LEA) peptides confer tolerance to abiotic stresses including salinity, drought, high and low temperature, and ultraviolet radiation same as the LEA proteins from which they originate. In this study, LEA peptides derived from group 3 LEA proteins of Polypedilum vanderplanki were used to enhance low pH tolerance. Recombinant Escherichia coli BL21 (DE3) cells expressing the five designed LEA peptides were grown at pH 4, 3, and 2. The transformants showed higher growth capacity at low pH as compared to control cells. These results indicate that LEA peptide could prevent E. coli cell death under low pH conditions.


Assuntos
Chironomidae/genética , Escherichia coli , Proteínas de Insetos , Biossíntese Peptídica , Peptídeos/genética , Animais , Chironomidae/embriologia , Desenvolvimento Embrionário , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
14.
Ecotoxicol Environ Saf ; 192: 110240, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32014723

RESUMO

Cadmium, a toxic heavy metal, is a persistent environmental contaminant with irreversible toxicity to aquatic organisms. Chironomus plumosus, a natural species, is the largest sediment-burrowing aquatic midge in freshwater environments. In this study, we evaluated developmental defects in C. plumosus resulting from Cd exposure. In C. plumosus larvae, Cd exposure induced decreased survival and growth rates, reduction of emergence rate and sex ratio, and delayed emergence, as well as elevating the incidence of split tooth deformities. To identify potential biomarker genes to assess environmental pollutants such as Cd, we identified differentially expressed genes (DEGs) in C. plumosus exposed to various Cd concentrations. Among fourteen characterized DEGs, serine-type endopeptidase (SP) and heat shock protein 70 (HSP70) genes exhibited significant upregulation in C. plumosus larvae after Cd exposure. Therefore, we evaluated SP and HSP70 responses in natural C. plumosus populations collected from three sites of a Korean river and analyzed their correlations with eighteen environmental quality characteristics using principal component analysis. The highest expression of SP and HSP70 transcripts was observed in C. plumosus populations from Yeosu in Korea, which has high concentrations of polluting heavy metals. SP transcript expression was positively correlated with concentrations of Cd, Pb, Al, Fe, NO2, and NO3. These results suggested that environmental pollutants such as Cd can impair proteolytic activity in the digestive system of C. plumosus and may ultimately induce developmental alterations. We therefore suggest SP as a potential biomarker to assess the effects of environmental pollutants in aquatic ecosystems.


Assuntos
Cádmio/toxicidade , Chironomidae/efeitos dos fármacos , Serina Endopeptidases/biossíntese , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Chironomidae/enzimologia , Chironomidae/genética , Chironomidae/crescimento & desenvolvimento , Ecossistema , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/genética , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Metais Pesados/toxicidade , RNA Mensageiro/biossíntese , República da Coreia , Rios , Serina Endopeptidases/genética , Regulação para Cima
15.
Sci Rep ; 9(1): 7004, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065019

RESUMO

Larvae of the African midge Polypedilum vanderplanki (Diptera: Chironomidae) show a form of extreme desiccation tolerance known as anhydrobiosis. The cell line Pv11 was recently established from the species, and these cells can also survive under desiccated conditions, and proliferate normally after rehydration. Here we report the identification of a new promoter, 121, which has strong constitutive transcriptional activity in Pv11 cells and promotes effective expression of exogenous genes. Using a luciferase reporter assay, this strong transcriptional activity was shown to be conserved in cell lines from various insect species, including S2 (Drosophila melanogaster, Diptera), SaPe-4 (Sarcophaga peregrina, Diptera), Sf9 (Spodoptera frugiperda, Lepidoptera) and Tc81 (Tribolium castaneum, Coleoptera) cells. In conjunction with an appropriate selection maker gene, the 121 promoter was able to confer zeocin resistance on SaPe-4 cells and allowed the establishment of stable SaPe-4 cell lines expressing the fluorescent protein AcGFP1; this is the first report of heterologous gene expression in this cell line. These results show the 121 promoter to be a versatile tool for exogenous gene expression in a wide range of insect cell lines, particularly useful to those from non-model insect species.


Assuntos
Chironomidae/genética , Expressão Gênica , Regiões Promotoras Genéticas , Adaptação Fisiológica , Animais , Linhagem Celular , Chironomidae/fisiologia , Proteínas de Insetos/genética , Células Sf9
16.
Sci Total Environ ; 677: 590-598, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31071664

RESUMO

Metals and heavy metals are natural contaminants with an increasing presence in aquatic ecosystems as a result of human activities. Although they are mixed in the water, research is usually focused on analyzing them in isolation, so there is a lack of knowledge about their combined effects. The aim of this work was to assess the damage produced by mixtures of cadmium and copper, two frequent metals used in industry, in the harlequin midge Chironomus riparius (Diptera). The effects of acute doses of cadmium and copper were evaluated in fourth instar larvae by analyzing the mRNA levels of six genes related to apoptosis (DRONC, IAP1), immune system (PO1, Defensin), stress (Gp93), and copper homeostasis (Ctr1). DRONC, Ctr1, and IAP1 transcripts are described here for first time in this species. Individual fourth instar larvae were submitted to 10 µM, 1 µM and 0.1 µM of CdCl2 or CuCl2, and mixture. The employed individuals came from different egg masses. Real-time PCR analysis showed a complex pattern of alterations in transcriptional activity for two genes, DRONC and Gp93, while the rest of them did not show any statistically significant differences. The effector caspase DRONC showed upregulation with the highest concentration tested of the mixture. In case of gp93, chaperone involved in regulation of immune response, differences in expression levels were found with 1 and 10 µM Cu and 0.1 and 10 µM of mixtures, compared to control samples. These results suggest that mixtures affect the transcriptional activity differently and produce changes in apoptosis and stress processes, although it is also possible that Gp93 alteration could be related to the immune system since it is homologous to human protein Gp96, which has been related with Toll-like receptors. In conclusion, cadmium and copper mixtures can affect the population by affecting the ability of larvae to respond to the infection and the apoptosis, an important process in the metamorphosis of insects.


Assuntos
Apoptose/efeitos dos fármacos , Cloreto de Cádmio/efeitos adversos , Chironomidae/efeitos dos fármacos , Cobre/efeitos adversos , Proteínas de Insetos/genética , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Animais , Apoptose/genética , Chironomidae/genética , Chironomidae/crescimento & desenvolvimento , Chironomidae/fisiologia , Relação Dose-Resposta a Droga , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/fisiologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
17.
Adv Exp Med Biol ; 1081: 259-270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288714

RESUMO

One of the major damaging factors for living organisms experiencing water insufficiency is oxidative stress. Loss of water causes a dramatic increase in the production of reactive oxygen species (ROS). Thus, the ability for some organisms to survive almost complete desiccation (called anhydrobiosis) is tightly related to the ability to overcome extraordinary oxidative stress. The most complex anhydrobiotic organism known is the larva of the chironomid Polypedilum vanderplanki. Its antioxidant system shows remarkable features, such as an expansion of antioxidant genes, their overexpression, as well as the absence or low expression of enzymes required for the synthesis of ascorbate and glutathione and their antioxidant function. In this chapter, we summarize existing data about the antioxidant system of this insect, which is able to cope with substantial oxidative damage, even in an intracellular environment that is severely disturbed due to water loss.


Assuntos
Aclimatação , Antioxidantes/metabolismo , Chironomidae/metabolismo , Estresse Oxidativo , Água/metabolismo , Animais , Chironomidae/embriologia , Chironomidae/genética , Desidratação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo , Estado de Hidratação do Organismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
18.
Adv Exp Med Biol ; 1081: 271-286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288715

RESUMO

In this review, we first focus on the mechanism by which the larva of the sleeping chironomid, Polypedilum vanderplanki, survives an extremely dehydrated state and describe how trehalose and probably late embryogenesis abundant (LEA) proteins work as desiccation protectants. Second, we summarize the solid-state and solution properties of trehalose and discuss why trehalose works better than other disaccharides as a desiccation protectant. Third, we describe the structure and function of two model peptides based on group 3 LEA proteins after a short introduction of native LEA proteins themselves. Finally, we present our conclusions and a perspective on the application of trehalose and LEA model peptides to the long-term storage of biological materials.


Assuntos
Chironomidae/metabolismo , Secas , Proteínas de Insetos/metabolismo , Trealose/metabolismo , Água/metabolismo , Animais , Chironomidae/embriologia , Chironomidae/genética , Desidratação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/metabolismo , Estado de Hidratação do Organismo , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
19.
Ecotoxicol Environ Saf ; 165: 126-135, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195204

RESUMO

Propsilocerus akamusi (Tokunaga) is a common species of midge in Siberia, Japan, and China and an important prey species for fish and aquatic birds. Furthermore, this species has been shown to have an extraordinary capacity to resist cadmium (Cd) toxicity. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) coupled liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to analyze relative changes in the P. akamusi hemolymph proteome following exposure to a sublethal concentration of Cd2+. The results showed that Cd2+ stress affects energy metabolism in P. akamusi. After examining the differentially expressed proteins (DEPs), only one up-regulated protein associated with metabolism, α-enolase (Eno1) was identified and further isolated and characterized. Sequence alignments showed that the deduced P. akamusi Eno1 amino acid sequence is highly conserved, with similarities of 77-95% noted when compared to other Dipteran Eno1 sequences. Furthermore, prolonged Cd2+ exposure impacted Eno1 transcription, protein expression and enzyme activity levels. These results suggest that Eno1 may play a role in the response to Cd2+ stress in P. akamusi.


Assuntos
Chironomidae/enzimologia , Chironomidae/genética , Hemolinfa/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteoma/metabolismo , Estresse Fisiológico/genética , Sequência de Aminoácidos , Animais , Cádmio/toxicidade , Chironomidae/metabolismo , Cromatografia Líquida/métodos , Metabolismo Energético/efeitos dos fármacos , Fosfopiruvato Hidratase/genética , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Transcrição Gênica/efeitos dos fármacos
20.
Biochem Biophys Res Commun ; 503(2): 910-914, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29928878

RESUMO

Ultraviolet (UV) radiation causes damage in all living organisms, including DNA damage that leads to cell death. Herein, we provide a new technique for UV radiation protection through intracellular short peptide expression. The late embryogenesis abundant (LEA) peptide, which functions as a shield that protects macromolecules from various abiotic stress, was obtained from the Polypedilum vanderplanki group 3 LEA protein. Recombinant Escherichia coli BL21 (DE3) expressing functional LEA short peptide in vivo were exposed to UVA and UVC radiation for 4, 6, and 8 h. E. coli transformants expressing the LEA peptide showed higher cell viability under both UVA and UVC treatment at all time points as compared with that of the control. Furthermore, the cells expressing LEA peptide showed a higher number of colony-forming units per dilution under UVA and UVC treatment. These results suggested that expression of the short peptide could be useful for the development of genetically modified organisms and in applications that require resilience of organisms to UV radiation.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Escherichia coli/efeitos da radiação , Expressão Gênica , Proteínas de Insetos/genética , Peptídeos/genética , Raios Ultravioleta , Adaptação Fisiológica/genética , Animais , Chironomidae/genética , Escherichia coli/genética , Engenharia Genética/métodos , Viabilidade Microbiana/genética , Viabilidade Microbiana/efeitos da radiação , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA